Search results for "WINE YEAST"

showing 10 items of 17 documents

Sch 9p kinase and the Gcn4p transcription factor regulate glycerol production during winemaking

2017

Grape juice fermentation is a harsh environment with many stressful conditions, and Saccharomyces cerevisiae adapts its metabolism in response to those environmental challenges. Many nutrient-sensing pathways control this feature. The Tor/Sch9p pathway promotes growth and protein synthesis when nutrients are plenty, while the transcription factor Gcn4p is required for the activation of amino acid biosynthetic pathways. We previously showed that Sch9p impact on longevity depends on the nitrogen/carbon ratio. When nitrogen is limiting, SCH9 deletion shortens chronological life span, which is the case under winemaking conditions. Its deletion also increases glycerol during fermentation, so the…

Gcn4pGlycerol0301 basic medicineSaccharomyces cerevisiae ProteinsWine yeastLongevitySaccharomyces cerevisiaeGene ExpressionSch9pWineSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiologyApplied Microbiology and BiotechnologyMicrobiology03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation FungalGlycerolProtein biosynthesisMetabolomicsGlycolysisAmino acid synthesischemistry.chemical_classificationGene Expression ProfilingGeneral MedicineMetabolismbiology.organism_classificationAmino acidYeast in winemakingBasic-Leucine Zipper Transcription Factors030104 developmental biologychemistryBiochemistryFermentationGene DeletionFEMS Yeast Research
researchProduct

Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capaci…

2015

Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating lactic-acid bacteria growth. The selection of a yeast strain that simultaneously overproduces mannoproteins and presents good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae × S. cerevisiae hybrid bearing the two oenologically relevant features was constructed. According to the genomic characterisation of the hybrids, different copy numbers of some genes probably related with these physiological features were detected. The hybrid shared not only a similar copy number of genes SPR1…

Saccharomyces cerevisiae ProteinsBiotecnología AgropecuariaSaccharomyces cerevisiaeGene DosageWineSaccharomyces cerevisiaeSPORE TO SPORE MATINGAliments MicrobiologiaMicrobiologyCell WallFermentacióHybridYEAST HYBRIDIZATIONMembrane Glycoproteinsbiologybusiness.industryGeneral MedicineHibridacióbiology.organism_classificationBiotechnologyYeast in winemakingCIENCIAS AGRÍCOLASRARE MATINGFermentationWINE YEASTBiotecnología Agrícola y Biotecnología AlimentariaHybridization GeneticFermentationChristian ministryGenome FungalbusinessFood ScienceInternational journal of food microbiology
researchProduct

Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions

2019

This work aims to describe the wine fermentation characteristics of 23 natural S. cerevisiae × S. kudriavzevii hybrid yeasts related to fermentative environments isolated from different regions and their significance for the aroma spectra of the produced wines. Fermentations were performed at 12 °C in artificial must, and S. cerevisiae and S. kudriavzevii pure species strains were used for comparison purposes. We determined the relevant kinetic parameters of fermentation, the concentration of the main metabolites and the main aroma-related compounds produced after fermentation. The results revealed that some strains that show well-rounded characteristics could be profitable yeast starters f…

Wine yeastNatural hybridsS. cerevisiaeWineSaccharomyces cerevisiaeMicrobiologySaccharomyces03 medical and health sciencesFood microbiologyS. kudriavzeviiFood scienceAromaAroma030304 developmental biologyWinemakingWineFermentation in winemaking0303 health sciencesbiology030306 microbiologyChemistryfood and beveragesGeneral Medicinebiology.organism_classificationYeastCold Temperaturecarbohydrates (lipids)Yeast in winemakingFermentationOdorantsCryotoleranceHybridization GeneticFermentationFood ScienceInternational Journal of Food Microbiology
researchProduct

Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast

2015

The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative …

Active dry wine yeastsAntioxidantfood.ingredientmedicine.medical_treatmentBiophysicsArgan oilfood and beveragesBiologymedicine.disease_causeAscorbic acidApplied Microbiology and BiotechnologyYeastAntioxidant defensesLipid peroxidationchemistry.chemical_compoundOleic acidfoodchemistryBiochemistryOxidative damagemedicineCaffeic acidFood-grade argan oil antioxidant capacityOriginal ArticleOxidative stressAMB Express
researchProduct

Candida zemplinina yeasts positively impact wine production: lower alcohol levels and higher glycerol contents

2012

Settore AGR/15 - Scienze E Tecnologie AlimentariCandida zemplinina wine yeasts mixed fermentation
researchProduct

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry ye…

2018

Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY) production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidat…

0301 basic medicineAntioxidantEstrès oxidatiumedicine.medical_treatmentGlutathione reductasenon-Saccharomyces yeastsProtein oxidationBiochemistry Genetics and Molecular Biology (miscellaneous)MicrobiologyApplied Microbiology and BiotechnologySaccharomyces03 medical and health scienceschemistry.chemical_compoundFood-grade argan oilVirologyOxidative damageGeneticsmedicineFood sciencelcsh:QH301-705.5Molecular BiologyActive dry wine yeastsantioxidant defensebiologyfood and beveragesCell BiologyGlutathionebiology.organism_classificationTrehaloseYeast030104 developmental biologylcsh:Biology (General)chemistryViniculturaParasitologyFermentationAntioxidant defencesMicrobial Cell
researchProduct

Transcriptomic and proteomic insights of the wine yeast biomass propagation process

2010

Transcriptome and proteome profiles have been established for the commercial wine yeast strain T73 during an important industrial process: yeast biomass propagation. The data from both analyses reveal that the metabolic transition from fermentation to respiration is the most critical step in biomass propagation. We identified 177 ORFs and 56 proteins among those most expressed during the process, thus highlighting cell stress response, mitochondrial and carbohydrate metabolism as the most represented functional categories. A direct correlation between mRNA changes and protein abundance was observed for several functional categories such as tricarboxylic acid cycle proteins, heat shock prote…

ProteomeWine yeastBiomass propagation
researchProduct

Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation

2009

7 pages, 4 figures, 5 tables.

WineHybridsSugars in wineFructoseMicrobiologySaccharomycesSaccharomyceschemistry.chemical_compoundSpecies SpecificitySugar consumptionFood scienceWinemakingWine yeastsWinebiologyTemperatureGenetic Variationfood and beveragesFructoseGeneral Medicinebiology.organism_classificationYeastKineticsYeast in winemakingGlucosechemistryBiochemistryFermentationFood MicrobiologyFermentationFood ScienceInternational Journal of Food Microbiology
researchProduct

De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain

2015

[Background] Monoterpenes are important contributors to grape and wine aroma. Moreover, certain monoterpenes have been shown to display health benefits with antimicrobial, anti-inflammatory, anticancer or hypotensive properties amongst others. The aim of this study was to construct self-aromatizing wine yeasts to overproduce de novo these plant metabolites in wines.

GeraniolWine aromaMonoterpeneAroma of wineGeranyl acetateBioengineeringWineSaccharomyces cerevisiaeBiologyApplied Microbiology and Biotechnologychemistry.chemical_compoundLinaloolNerolVitisFood sciencePlant ProteinsWineCitronellolResearchfungidigestive oral and skin physiologyfood and beveragesPhosphoric Monoester HydrolasesRecombinant ProteinsMonoterpene bioconversionchemistryBiochemistryFermentationOdorantsOcimum basilicumMonoterpenesSelf-aromatizing wine yeastsGeraniol synthaseMetabolic engineeringGeraniolBiotechnology
researchProduct

Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar

2016

International audience; Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina), Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at …

0301 basic medicineMicrobiology (medical)Grape berriesCerevisiaeWine yeast[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition030106 microbiologyStarmerellalcsh:QR1-502StrainsCandida-stellataHanseniasporaMicrobiologySaccharomyceslcsh:MicrobiologyHanseniaspora03 medical and health sciences[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologycellarBotanyOriginal ResearchWinemakingDiversitybiologyfungifood and beveragespersistenceEnological propertiesbiology.organism_classificationSulfur-dioxideYeastCandida zemplininaYeast in winemaking[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitologynon-Saccharomyces strainsStarmerellaHanseniaspora guilliermondiiAlcoholic fermentationPopulation-dynamicsFrontiers in Microbiology
researchProduct